Course Title		Geo-Energy Data Analytics					
					Course Imp	lementation, l	Hours/Week
Code	Semester	Local Credits	EC	CTS	Theoretical	Tutorial	Laboratory
			Cre	edits			
PET 328E	8	3		6	3	0	0
Department		Petroleum and Natural Gas Engineering					
Course Type		Elective		Course Language		English	
Course Prerequisites							
Course Category By Content, %		Math &		Engineering Topics;			
		Basic Sciences Check		Check	eck if Contains Significant Design		Other
		_			100		-

PET 328E GEO-ENERGY DATA ANALYTICS

	Overview of data science concepts. Data types for subsurface energy resources. Basic
	principles of descriptive and inferential statistics. Exploratory data analysis and data
Course Description	mining as applied to subsurface data types. Data visualization. Introduction to
	supervised and unsupervised machine learning. Applications with modern computational
	tools and packages. Case studies for oil, natural gas and geothermal engineering.
	1. Familiarize students with subsurface data types collected in oil, natural gas and
	geothermal engineering
	2. Develop students' ability to apply exploratory data analysis, data mining concepts
Course Objectives	to subsurface data with appropriate visualization and analysis techniques
	3. Develop students' ability to deal with large data sets through the use of modern
	computational tools and packages
	4. Introduce students supervised and unsupervised machine learning algorithms for the
	development of prediction and classification models for subsurface data
	Students who pass the course will be able to:
	1. Define and classify different types of data collected for subsurface energy resources
	2. Clean and process subsurface data using modern statistical computational packages
	for further analysis and visualization
Course Learning	3. Perform exploratory data analysis by creating and interpreting visual representations
Outcomes	and statistical summaries of data related to subsurface energy resources
	4. Design and train machine learning models for prediction and classification using
	supervised and unsupervised algorithms
	5. Report data analytics and machine learning projects in an organized way and in
	1 Dette Curte A Michre S (2017) Applied Statistical Modeling and Data
Textbook	1. Datta-Oupia, A., Misilia, S. (2017). Applied Statistical Modeling and Data Analytics: A Practical Guida for the Patrolaum Gaosciances, Elsevier
	1 James G. Witten D. Hastie T. Tibshirani P. (2021) An Introduction to
	Statistical Learning: With Applications in P. 2nd Edition Springer
Other References	2 Tang P Steinbach M Karpathe A Kumar V (2018) Introduction to Data
other Kelerences	Mining 2nd Edition Pearson
	3. Iliinsky, N., Steele, J. (2011) <i>Designing Data Visualizations</i> . O'Reilly,
Hamarianla 6	
Homework &	-
Projects	
Laboratory work	
Laboratory work	
Computer Use	-

Other Activities	-		
	Activities	Quantity	Effects on Grading, %
	Midterms	1	30
	Quizzes	-	-
	Homework	5	30
Assessment Criteria	Projects	-	-
	Term Paper/Projects	-	-
	Laboratory Work	-	-
	Other Activities	-	-
	Final Exam	1	40

Weeks	Course Plan (lectures)	Course Outcomes
1	Introduction to data science and analytics for subsurface energy sources	1
2	Subsurface data sources, types, scales (seismic, logs, production, pressure, PVT)	1
3	Review of descriptive and inferential statistics concepts	3
4	Data wrangling: filtering/grouping and dealing with missing values	2
5	Data wrangling: statistical summaries	2
6	Data visualization: Numerical/categorical variables (reservoir / time-series data)	3
7	Data visualization: Text analytics (drilling reports)	3
8	Multivariate data analysis: applications to subsurface data	3
9	Analytics reporting: reproducibility, version control, reporting	5
10	Introduction to machine learning	4
11	Supervised learning - prediction problems	4
12	Supervised learning - classification problems	4
13	Unsupervised learning	4
14	Term project presentations and discussions	5

Prepared by	Date
Assoc. Prof. Dr. Emre Artun	01/05/2022